Pd-Catalyzed Intramolecular C-N Bond Cleavage, 1,4-Migration, sp³ C-H Activation, and Heck Reaction: Four Controllable Diverse Pathways Depending on the Judicious Choice of the Base and Ligand

Min Wang, Xiang Zhang, Yu-Xuan Zhuang, Yun-He Xu, and Teck-Peng Loh

> University of Science and Technology of China, China Nanyang Technological University, Singapore

> > DOI: 10.1021/ja512212x

Joseph Salamoun Current Literature 1/31/15 Wipf Group

Joe Salamoun @ Wipf Group

2/14/2015

Versatility of Pd in Synthesis

- Cross-couplings
- Hydrogenations
- Oxidations
- Allylation
- Synthesis of Heterocycles
- □ Carbonylation
- Rearrangements

Examples of Pd-Catalyzed Domino Transformations

2/14/2015 Tetrahedron **1996**, 52, 2743.

Examples of Pd-Catalyzed Domino Transformations, contd.

Examples of Pd-Catalyzed Domino Transformations, contd.

В

Α

Previous Work from the Loh Group with Vinylacetamides

Current Work

Reaction Optimization

entry	catalyst (10 mol%)	ligand (mol%)	base (equiv)	additive (equiv)	2 (%)	3 (%)	4 (%)
1	none	PPh ₃ (20)	K ₂ CO ₃ (1.2)	none	0	0	0
2	$Pd(OAc)_2$	PPh ₃ (20)	none	none	0	0	0
3	$Pd(OAc)_2$	PPh ₃ (20)	$K_2 CO_3 (1.2)$	none	4	40	56
4	Pd(PPh ₃) ₄	none	K ₂ CO ₃ (1.2)	none	0	0	0
5	Pd(PhCN) ₂ Cl ₂	PPh ₃ (20)	$K_2 CO_3 (1.2)$	none	trace	trace	10
6	$Pd(OAc)_2$	PPh ₃ (20)	Et ₂ NH (2.0)	none	20	0	0
7	Pd(OAc) ₂	PPh₃ (20)	Et ₃ N (2.0)	none	90 (80)	0	0
8	Pd(OAc) ₂	PPh ₃ (20)	DBU (2.0)	none	16	0	0
9	$Pd(OAc)_2$	PCy ₃ (20)	Et ₃ N (2.0)	none	11	0	0
10	$Pd(OAc)_2$	dppb (10)	Et ₃ N (2.0)	none	23	0	0
11	Pd(OAc) ₂	dppb (10)	$K_2 CO_3 (1.2)$	none	4	38	54
12	$Pd(OAc)_2$	XantPhos (10)	K ₂ CO ₃ (1.2)	none	3	43	52
13	$Pd(OAc)_2$	Johnphos (20)	K ₂ CO ₃ (1.2)	none	5	45	50
14	$Pd(OAc)_2$	Johnphos (30)	K ₂ CO ₃ (1.2)	none	4	47	47
15	$Pd(OAc)_2$	Johnphos (10)	K ₂ CO ₃ (1.2)	none	3	54	43
16	$Pd(OAc)_2$	Johnphos (10)	K ₃ PO ₄ (1.2)	none	18	48	33
17	$Pd(OAc)_2$	Johnphos (10)	Ag_2CO_3 (1.2)	none	0	0	0
18	$Pd(OAc)_2$	Johnphos (10)	$Na_{2}CO_{3}(1.2)$	none	19	55	9
19	$Pd(OAc)_2$	Johnphos (10)	$Na_{2}CO_{3}(1.2)$	PivOH (0.3)	16	62	18
20	Pd(OAc) ₂	Johnphos (10)	$Na_2CO_3(1.2)$	TBAC (1.0)	10	76 (75)	trace
21	$Pd(OAc)_2$	Johnphos (10)	Na_2CO_3 (1.2)	TBAB (1.0)	16	62	18
22		PPh₃ (20)	$Cs_2CQ_3(1,2)_{15}$	none	10	trace	271, (68)

DOI: 10.1021/ja512212x

Proposed Mechanisms

β-C-N Elimination for Synthesis of 1,1-Disubstituted Ethylene Derivatives

Joe Salamoun @ Wipf Group

Page 10 of 15

2/14/2015 DOI: 10.1021/ja512212x

β-C-N Elimination for Synthesis of 1,1-Disubstituted Ethylene Derivatives

Pd-Catalyzed 5-*exo*-Heck, 1,4-Pd Migration, and Aryl-Aryl Coupling

3i, 74% Joe Salamoud/@ ₩0

3j, 59%

Page 12 of 15

3k, 61%

3I, 50% 2/14/2015 DOI: 10.1021/ja512212x

Pd-Catalyzed 6-endo Heck

^{2/14/2015} DOI: 10.1021/ja512212x

Pd-Catalyzed α -C-H Bond Direct Functionalization

2/14/2015 DOI: 10.1021/ja512212x

Conclusions

- Choice of ligand and base impacts reaction pathway allowing for selective product formation.
- Good yields for multiple bond breaking/forming reactions that may be useful for a variety of scaffolds.
- Need a better mechanistic understanding of the impact of ligand and base selections. Future studies?
- Low yields are not adequately explained. Are any undesired products seen (i.e. selectivity problems)?